Energia hidrelétrica e mudanças climáticas na implementação da Primeira Contribuição Nacional Determinada no Equador

Autores

DOI:

https://doi.org/10.46380/rias.vol5.e268

Palavras-chave:

energia, hidroeletricidade, meio ambiente, mudança climática, renovável, sustentável

Resumo

O aquecimento global ameaça o abastecimento de água do mundo, representando uma ameaça significativa para a geração de energia hidrelétrica. No entanto, o aumento contínuo da demanda de energia devido ao crescimento populacional e ao desenvolvimento socioeconômico exige essa fonte renovável. O artigo pretende analisar a tendência futura das mudanças climáticas no desenvolvimento hidrelétrico em cinco usinas (Coca Codo Sinclair, Manduriacu, Minas San Francisco, Toachi Pilatón e Delsintagua) em relação à implementação da Contribuição Nacional Determinada. A metodologia é exploratória e apresenta duas abordagens: qualitativa e quantitativa. Para projetar os cenários utilizamos dados do Painel Intergovernamental sobre Mudanças Climáticas referentes a três linhas de evolução A1, B1 e B2. Os resultados mostram que a mudança climática constitui um dos desafios mais importantes que o Equador enfrenta para cumprir a Contribuição Nacional Determinada porque a energia hidrelétrica apresenta uma ineficiência de 15,8% nos últimos 20 anos. Os cenários mostram uma redução na capacidade total dos projetos hidrelétricos até 2050 de aproximadamente 1.909 MW para A1, 2.041 MW para B1 e 2.132 MW para B2.

Downloads

Não há dados estatísticos.

Metrics

Carregando Métricas ...

Referências

Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P., Gregory, J. M., Hegerl, G. C., Heimann, M., Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Manning, M., Matsuno, T., Molina, M., … Zwiers, F. (2007). Resumen para Políticas Responsables de los Expertos sobre Cambio Climático. Grupo Intergubernamental de Expertos sobre Cambio Climático https://bit.ly/3QGKGpN

Antwi, M., & Sedegah, D. D. (2018). Climate change and societal change—impact on hydropower energy generation. In A. Kabo-Bah and Ch. J. Diji (Ed.), Sustainable hydropower in West Africa: planning, operation, and challenges (pp. 63–73). Elsevier. https://doi.org/h76q

Arango-Aramburo, S., Turner, S. W. D., Daenzer, K., Ríos-Ocampo, J. P., Hejazi, M. I., Kober, T., Álvarez-Espinosa, A. C., Romero-Otalora, G. D., & van der Zwaan, B. (2019). Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways. Energy Policy, 128, 179–188. https://doi.org/ggvnfz

Banco Interamericano de Desarrollo. (s.f.). Energía sostenible, confiable y diversificada para América Latina y el Caribe. Recuperado el 6 de julio de 2022 de https://bit.ly/3w3F7Km

Berga, L. (2016). The role of hydropower in climate change mitigation and adaptation: A review. Engineering, 2(3), 313–318. https://doi.org/ghk54p

Carvajal, P. E., & Li, F. G. N. (2019). Challenges for hydropower-based national determined contributions: a case study for Ecuador. Climate Policy, 19(8), 974–987. https://doi.org/h76s

Carvajal, P. E., Li, F. G. N., Soria, R., Cronin, J., Anandarajah, G., & Mulugetta, Y. (2019). Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strategy Reviews, 23, 86–99. https://doi.org/ggjv9j

Corporación Eléctrica del Ecuador. (14 de enero de 2021). CELEC EP genera y transmite más del 90 por ciento de la energía eléctrica limpia que consume el país y exporta a los países vecinos. https://bit.ly/3dpDNLb

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C., & Matschoss, P. (2011). Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. Cambridge University Press. https://doi.org/cdkjg8

Hartmann, J. (2020). Manual de Entrenamiento sobre Cambio Climático e Hidroenergía. Proyecto AICCA. Ministerio del Ambiente y Agua de Ecuador/Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN) (p. 1012). https://bit.ly/3K1yXA8

International Hydropower Association. (2018). Hydropower Sustainability Guidelines on Good International Industry Practice. https://bit.ly/2PXZdh5

International Hydropower Association. (2021). 2021 Hydropower Status Report. Sector trends and insights. https://bit.ly/3pk8h3P

International Renewable Energy Agency. (2020). Renewable Energy Statistics 2020. https://bit.ly/3phP1E7

Jabbari, A. A., & Nazemi, A. (2019). Alterations in Canadian hydropower production potential due to continuation of historical trends in climate variables. Resources, 8(4), 163. https://doi.org/h77b

Llerena-Montoya, S., Velastegui-Montoya, A., Zhirzhan-Azanza, B., Herrera-Matamoros, V., Adami, M., de Lima, A., Moscoso-Silva, F., & Encalada, L. (2021). Multitemporal analysis of land use and land cover within an oil block in the Ecuadorian Amazon. International Journal of Geo-Information, 10(3). https://doi.org/h77c

Lohrmann, A., Child, M., & Breyer, Ch. (2021). Assessment of the water footprint for the European power sector during the transition towards a 100% renewable energy system. Energy, 233(15), 121098. https://doi.org/gkbvms

Ministry of the Environment. (2017). Estrategia nacional para el cambio climático de Ecuador 2012-2025. https://bit.ly/3REgo88

Ministry of the Environment. (2019). Contribution Nationally Determined: Ecuador. https://bit.ly/3B9jyK1

Ministry of Environment and Water. (2021). Plan de Implementación de la Primera Contribución Determinada a Nivel Nacional del Ecuador 2020-2025 (PI-NDC). https://bit.ly/3QKcFEt

Naranjo-Silva, S., & Álvarez, J. (2021a). An approach of the hydropower: Advantages and impacts. A review. Journal of Energy Research and Reviews, 8(1), 10–20. https://doi.org/h77f

Naranjo-Silva, S., & Álvarez, J. (2021b). Hydropower: Projections in a changing climate and impacts by this “clean” source. CienciAmérica, 10(2), 32. https://doi.org/h77g

Naranjo-Silva, S., & Álvarez, J. (2022). The American continent hydropower development and the sustainability: A Review. International Journal of Engineering Science Technologies, 6(2), 66–79. https://doi.org/h77j

Naranjo-Silva, S., Punina, D. J., & Álvarez, J. (2022). Comparative cost per kilowatt of the latest hydropower projects in Ecuador. InGenio Journal, 5(1), 1–14. https://doi.org/h77q

Naranjo-Silva, S., Rivera-Gonzalez, L., Escobar-Segovia, K., Quimbita-Chiluisa, O., & Álvarez, J. (2022). Analysis of water characteristics by the hydropower use (up-stream and downstream): A case of study at Ecuador, Argentina, and Uruguay. Journal of Sustainable Development, 15(4), 71. https://doi.org/h77r

Niez, A. (2010). Comparative study on rural electrification policies in emerging economies: Keys to successful policies. International Energy Agency. https://bit.ly/3SQeEJN

Rivera-González, L., Bolonio, D., Mazadiego, L. F., Naranjo-Silva, S., & Escobar-Segovia, K. (2020). Long-term forecast of energy and fuels demand towards a sustainable road transport sector in Ecuador (2016-2035): A LEAP model application. Sustainability, 12(2), 472. https://doi.org/h77s

Schaeffer, R., Szklo, A., Lucena, A., Soria, R., & Chávez-Rodríguez, M. (2013). The vulnerable Amazon: The impact of climate change on the untapped potential of hydropower system. IEEE Power & Energy Magazine, 11(3), 10. https://doi.org/h77t

Shove, E. (2010). Beyond the ABC: Climate change policy and theories of social change. Environment and Planning A: Economy and Space, 42(6), 1273-1285.https://doi.org/cj9fjq

Turner, S. W. D., Hejazi, M., Kim, S. H., Clarke, L., & Edmonds, J. (2017). Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 141(15), 2081–2090. https://doi.org/gcxkhq

Uamusse, M. M., Tussupova, K., & Persson, K. M. (2020). Climate change effects on hydropower in Mozambique. Applied Sciences, 10(14), 4842. https://doi.org/gjdndj

United Nations. (s.f.). Climate Change. https://bit.ly/3DjZiI6

Vaca-Jiménez, S., Gerbens-Leenes, P. W., & Nonhebel, S. (2019). The water footprint of electricity in Ecuador: Technology and fuel variation indicate pathways towards water-efficient electricity mixes. Water Resources and Industry, 22, 100112. https://doi.org/ggjv9n

van Vliet, M. T. H., van Beek, L. P. H., Eisner, S., Flörke, M., Wada, Y., & Bierkens, M. F. P. (2016). Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Global Environmental Change, 40, 156–170. https://doi.org/f84jww

van Vliet, M. T. H., Wiberg, D., Leduc, S., & Riahi, K. (2016). Power-generation system vulnerability and adaptation to changes in climate and water resources. Nature Climate Change, 6, 375–380. https://doi.org/bbsp

Villamar, D., Soria, R., Rochedo, P., Szklo, A., Imperio, M., Carvajal, P., & Schaeffer, R. (2021). Long-term deep decarbonization pathways for Ecuador: Insights from an integrated assessment model. Energy Strategy Reviews, 35, 100637. https://doi.org/h77x

World Energy Council. (2004). Comparison of energy systems using life cycle assessment. A special report of the World Energy Council. https://bit.ly/3DilbaL

Zhang, X., Li, H. Y., Deng, Z. D., Ringler, C., Gao, Y., Hejazi, M. I., & Leung, L. R. (2018). Impacts of climate change, policy and water-energy-food nexus on hydropower development. Renewable Energy, 116(A), 827–834. https://doi.org/gf4tbj

Publicado

2022-09-22

Como Citar

Naranjo-Silva, S., & Quimbita-Chiluisa , O. R. . (2022). Energia hidrelétrica e mudanças climáticas na implementação da Primeira Contribuição Nacional Determinada no Equador. Revista Iberoamericana Ambiente E Sustentabilidade, 5, e268. https://doi.org/10.46380/rias.vol5.e268

Edição

Seção

Gestión sustentable de recursos hídricos

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.