La hidroelectricidad y cambio climático en torno a la implementación de la Primera Contribución Nacional Determinada en Ecuador
DOI:
https://doi.org/10.46380/rias.vol5.e268Palabras clave:
cambio climático, energía, hidroelectricidad, medio ambiente, renovables, sosteniblesResumen
El calentamiento global amenaza los suministros de agua del mundo, lo que representa una amenaza significativa para la generación de energía hidroeléctrica. Sin embargo, el continuo aumento de la demanda de energía debido al crecimiento de la población y al desarrollo socioeconómico requiere esta fuente renovable. El artículo tiene como objetivo analizar la tendencia futura del cambio climático en el desarrollo hidroeléctrico en cinco centrales (Coca Codo Sinclair, Manduriacu, Minas San Francisco, Toachi Pilatón y Delsintagua) en relación con la implementación de Contribución Nacional Determinada. La metodología es exploratoria y presenta dos enfoques: cualitativo y cuantitativo. Para proyectar los escenarios utilizamos datos del Panel Intergubernamental de Cambio Climático relacionados con tres líneas de evolución A1, B1 y B2. Los resultados muestran que el cambio climático constituye uno de los desafíos más importantes que enfrenta Ecuador para cumplir con la Contribución Nacional Determinada debido a que la energía hidroeléctrica presenta una ineficiencia del 15.8% en los últimos 20 años. Los escenarios muestran una reducción de la capacidad total para los proyectos hidroeléctricos hasta 2050, de aproximadamente 1909 MW para A1, 2041 MW para B1 y 2132 MW en B2.
Descargas
Métricas
Citas
Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P., Gregory, J. M., Hegerl, G. C., Heimann, M., Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Manning, M., Matsuno, T., Molina, M., … Zwiers, F. (2007). Resumen para Políticas Responsables de los Expertos sobre Cambio Climático. Grupo Intergubernamental de Expertos sobre Cambio Climático https://bit.ly/3QGKGpN
Antwi, M., & Sedegah, D. D. (2018). Climate change and societal change—impact on hydropower energy generation. In A. Kabo-Bah and Ch. J. Diji (Ed.), Sustainable hydropower in West Africa: planning, operation, and challenges (pp. 63–73). Elsevier. https://doi.org/h76q
Arango-Aramburo, S., Turner, S. W. D., Daenzer, K., Ríos-Ocampo, J. P., Hejazi, M. I., Kober, T., Álvarez-Espinosa, A. C., Romero-Otalora, G. D., & van der Zwaan, B. (2019). Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways. Energy Policy, 128, 179–188. https://doi.org/ggvnfz
Banco Interamericano de Desarrollo. (s.f.). Energía sostenible, confiable y diversificada para América Latina y el Caribe. Recuperado el 6 de julio de 2022 de https://bit.ly/3w3F7Km
Berga, L. (2016). The role of hydropower in climate change mitigation and adaptation: A review. Engineering, 2(3), 313–318. https://doi.org/ghk54p
Carvajal, P. E., & Li, F. G. N. (2019). Challenges for hydropower-based national determined contributions: a case study for Ecuador. Climate Policy, 19(8), 974–987. https://doi.org/h76s
Carvajal, P. E., Li, F. G. N., Soria, R., Cronin, J., Anandarajah, G., & Mulugetta, Y. (2019). Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strategy Reviews, 23, 86–99. https://doi.org/ggjv9j
Corporación Eléctrica del Ecuador. (14 de enero de 2021). CELEC EP genera y transmite más del 90 por ciento de la energía eléctrica limpia que consume el país y exporta a los países vecinos. https://bit.ly/3dpDNLb
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C., & Matschoss, P. (2011). Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. Cambridge University Press. https://doi.org/cdkjg8
Hartmann, J. (2020). Manual de Entrenamiento sobre Cambio Climático e Hidroenergía. Proyecto AICCA. Ministerio del Ambiente y Agua de Ecuador/Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN) (p. 1012). https://bit.ly/3K1yXA8
International Hydropower Association. (2018). Hydropower Sustainability Guidelines on Good International Industry Practice. https://bit.ly/2PXZdh5
International Hydropower Association. (2021). 2021 Hydropower Status Report. Sector trends and insights. https://bit.ly/3pk8h3P
International Renewable Energy Agency. (2020). Renewable Energy Statistics 2020. https://bit.ly/3phP1E7
Jabbari, A. A., & Nazemi, A. (2019). Alterations in Canadian hydropower production potential due to continuation of historical trends in climate variables. Resources, 8(4), 163. https://doi.org/h77b
Llerena-Montoya, S., Velastegui-Montoya, A., Zhirzhan-Azanza, B., Herrera-Matamoros, V., Adami, M., de Lima, A., Moscoso-Silva, F., & Encalada, L. (2021). Multitemporal analysis of land use and land cover within an oil block in the Ecuadorian Amazon. International Journal of Geo-Information, 10(3). https://doi.org/h77c
Lohrmann, A., Child, M., & Breyer, Ch. (2021). Assessment of the water footprint for the European power sector during the transition towards a 100% renewable energy system. Energy, 233(15), 121098. https://doi.org/gkbvms
Ministry of the Environment. (2017). Estrategia nacional para el cambio climático de Ecuador 2012-2025. https://bit.ly/3REgo88
Ministry of the Environment. (2019). Contribution Nationally Determined: Ecuador. https://bit.ly/3B9jyK1
Ministry of Environment and Water. (2021). Plan de Implementación de la Primera Contribución Determinada a Nivel Nacional del Ecuador 2020-2025 (PI-NDC). https://bit.ly/3QKcFEt
Naranjo-Silva, S., & Álvarez, J. (2021a). An approach of the hydropower: Advantages and impacts. A review. Journal of Energy Research and Reviews, 8(1), 10–20. https://doi.org/h77f
Naranjo-Silva, S., & Álvarez, J. (2021b). Hydropower: Projections in a changing climate and impacts by this “clean” source. CienciAmérica, 10(2), 32. https://doi.org/h77g
Naranjo-Silva, S., & Álvarez, J. (2022). The American continent hydropower development and the sustainability: A Review. International Journal of Engineering Science Technologies, 6(2), 66–79. https://doi.org/h77j
Naranjo-Silva, S., Punina, D. J., & Álvarez, J. (2022). Comparative cost per kilowatt of the latest hydropower projects in Ecuador. InGenio Journal, 5(1), 1–14. https://doi.org/h77q
Naranjo-Silva, S., Rivera-Gonzalez, L., Escobar-Segovia, K., Quimbita-Chiluisa, O., & Álvarez, J. (2022). Analysis of water characteristics by the hydropower use (up-stream and downstream): A case of study at Ecuador, Argentina, and Uruguay. Journal of Sustainable Development, 15(4), 71. https://doi.org/h77r
Niez, A. (2010). Comparative study on rural electrification policies in emerging economies: Keys to successful policies. International Energy Agency. https://bit.ly/3SQeEJN
Rivera-González, L., Bolonio, D., Mazadiego, L. F., Naranjo-Silva, S., & Escobar-Segovia, K. (2020). Long-term forecast of energy and fuels demand towards a sustainable road transport sector in Ecuador (2016-2035): A LEAP model application. Sustainability, 12(2), 472. https://doi.org/h77s
Schaeffer, R., Szklo, A., Lucena, A., Soria, R., & Chávez-Rodríguez, M. (2013). The vulnerable Amazon: The impact of climate change on the untapped potential of hydropower system. IEEE Power & Energy Magazine, 11(3), 10. https://doi.org/h77t
Shove, E. (2010). Beyond the ABC: Climate change policy and theories of social change. Environment and Planning A: Economy and Space, 42(6), 1273-1285.https://doi.org/cj9fjq
Turner, S. W. D., Hejazi, M., Kim, S. H., Clarke, L., & Edmonds, J. (2017). Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 141(15), 2081–2090. https://doi.org/gcxkhq
Uamusse, M. M., Tussupova, K., & Persson, K. M. (2020). Climate change effects on hydropower in Mozambique. Applied Sciences, 10(14), 4842. https://doi.org/gjdndj
United Nations. (s.f.). Climate Change. https://bit.ly/3DjZiI6
Vaca-Jiménez, S., Gerbens-Leenes, P. W., & Nonhebel, S. (2019). The water footprint of electricity in Ecuador: Technology and fuel variation indicate pathways towards water-efficient electricity mixes. Water Resources and Industry, 22, 100112. https://doi.org/ggjv9n
van Vliet, M. T. H., van Beek, L. P. H., Eisner, S., Flörke, M., Wada, Y., & Bierkens, M. F. P. (2016). Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Global Environmental Change, 40, 156–170. https://doi.org/f84jww
van Vliet, M. T. H., Wiberg, D., Leduc, S., & Riahi, K. (2016). Power-generation system vulnerability and adaptation to changes in climate and water resources. Nature Climate Change, 6, 375–380. https://doi.org/bbsp
Villamar, D., Soria, R., Rochedo, P., Szklo, A., Imperio, M., Carvajal, P., & Schaeffer, R. (2021). Long-term deep decarbonization pathways for Ecuador: Insights from an integrated assessment model. Energy Strategy Reviews, 35, 100637. https://doi.org/h77x
World Energy Council. (2004). Comparison of energy systems using life cycle assessment. A special report of the World Energy Council. https://bit.ly/3DilbaL
Zhang, X., Li, H. Y., Deng, Z. D., Ringler, C., Gao, Y., Hejazi, M. I., & Leung, L. R. (2018). Impacts of climate change, policy and water-energy-food nexus on hydropower development. Renewable Energy, 116(A), 827–834. https://doi.org/gf4tbj
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Sebastian Naranjo-Silva, Omar Rolando Quimbita-Chiluisa

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.