Aquaponics systems for a sustainable development on rural areas of Manabí.

Authors

  • María Isabel Delgado Moreira Higher Polytechnic Agricultural School of Manabí Manuel Félix López, Ecuador
  • Wendy Virginia Alarcón Mendoza Higher Polytechnic Agricultural School of Manabí Manuel Félix López, Ecuador
  • Vladimir Isaías Caluguillín Caluguillín Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Ecuador
  • Patricio Javier Noles Aguilar Higher Polytechnic Agricultural School of Manabí Manuel Félix López, Ecuador
  • Carlos Ricardo Delgado Villafuerte Higher Polytechnic Agricultural School of Manabí Manuel Félix López, Ecuador

DOI:

https://doi.org/10.46380/rias.v2i3.66

Keywords:

aquaponics systems, growing rate, sustainable development, tilapia

Abstract

The aquaponics is a multi-trophic system that combines recirculation elements from the aquaculture and hydroponics. The objective of this work is to evaluate the production of two aquaponics systems for the sustainable development of the Manabí rural zones. The first one built was the floating root in a 2:1 proportion (two plants every one fish), so we cultivate 60 plants of lettuce (Lactuca sativa) and 30 tilapia (Oreochromis sp). The second one was a nutrients layer (NFT), with a 1:1 proportion, we cultivate lettuce and celery (Apium graveolens) (15 plant of each one) and 30 tilapia from the Nile (Oreochromis niloticus). Analysis of the physiochemical parameters of the water was made on both systems, obtaining normal levels for the food development (color, ph, nitrates, ammonium, calcium, and carbonate hardness) the rest of parameters were out of the normal range; never the less, we achieved a 100% survival of the cultivate products. We calculate de growing rate (TC) of lettuce and tilapia. We demonstrate that aquaponics systems contribute to the sustainable production.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Campos, R., Alonso, A., Avalos, D., Asiain, A. y Reta, J. (2013). Caracterización fisicoquímica de un efluente salobre de tilapia en acuaponía. Revista Mexicana de Ciencias Agrícolas, 5(Especial), 939-950. https://cutt.ly/RyK7mAn

Cohen, A., Malone, S., Morris, Z., Weissburg, M. y Bras, B. (2018). Combined Fish and Lettuce Cultivation: An Aquaponics Life Cycle Assessment. Procedia CIRP,69, 551–556. https://doi.org/10.1016/j.procir.2017.11.029

Coronel, M. y Chamba, D.F. (2014). Compración de rendimientos de cultivos de fresa (Fragaria ananassa) bajo los sistemas de hidroponía y acuaponía [Tesis de pregrado, Universidad Técnica Particular de Loja]. http://dspace.utpl.edu.ec/handle/123456789/11140

Forchino, A., Gennotte, V., Maiolo, S., Brigolin, D., Mélard, C., y Pastres, R. (2018). Eco-designing Aquaponics: a case study of an experimental production system in Belgium. Procedia CIRP,69, 546–550. https://doi.org/10.1016/j.procir.2017.11.064

Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K., Jijakli, H., y Thorarinsdottir, R. (2015). Challenges of Sustainable and Commercial Aquaponics. Sustainability,7(4), 4199-4224. https://doi.org/10.3390/su7044199

Lennard, W. (2010). A new look at NFT aquaponics. Aquaponics Journal, (56), 16-19. https://cutt.ly/dyK7InT

Li, C., Zhang, B., Luo, P., Shi, H., Li, L., Gao, Y., Lee, C., Zhang, Z. y Wu, W. (2019). Performance of a pilot-scale aquaponics system using hydroponics and immobilized biofilm treatment for water quality control. Journal of Cleaner Production, 208, 274-284. https://doi.org/10.1016/j.jclepro.2018.10.170

Love, D., Fry, J., Li, X., Hill, E., Genello, L., Semmens, K., y Thompson, R. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67-74. https://doi.org/10.1016/j.aquaculture.2014.09.023

Moreno, E. y Zafra, A. (2014). Sistema acuapónico del crecimiento de lechuga, Lactuca sativa, con efluentes de cultivo de tilapia. Revista de Investigación Científica REBIOL, 34(2), 60-72. http://revistas.unitru.edu.pe/index.php/facccbiol/index

Organización de las Naciones Unidas (2019). Desarrollo sostenible. Recuperada el 12 de febrero de 2019 de: http://www.un.org/es/ga/president/65/issues/sustdev.shtml

Packer, B. (2014). Aquaponics System. A Practical Guide To Building And Maintaining Your Own Backyard Aquaponics. Kindle Edition.

Ramírez, D., Jiménez, P. y Hurtado, H. (2013). La acuaponía: una alternativa orientada al desarrollo sostenible. Revista Facultad de Ciencias Básicas,4(1-2), 32-51. https://doi.org/10.18359/rfcb.2230

Reyes, D., Geelen, C., Cappon, H., Rijnaarts, H., Baganz, D., Kloas, W., Karimanzira, D. y Keesman, K. (2018). Model-based management strategy for resource efficient design and operation of an aquaponic system. Aquacultural Engineering,38, 27-39. https://doi.org/10.1016/j.aquaeng.2018.07.001

Rodríguez, H., Rubio, S., Gracía, M., Montoya, M. y Magallón, F. (2015). Análisis técnico de la producción de tilapia (Oreochromis niloticus) y lechuga (Lactuca sativa) en dos sistemas de acuaponía. Agroproductividad,8(3), 15-19. https://cutt.ly/hyK7KeO

Somerville, C., Cohen, M., Pantanella, E., Stankus, A. y Lovatelli, A. (2014). Small-scale aquaponic food production. Integrated fish and plant farming. Food and Agriculture Organization. http://www.fao.org/3/a-i4021e.pdf

Published

2019-12-27

How to Cite

Delgado Moreira, M. I., Alarcón Mendoza, W. V., Caluguillín Caluguillín, V. I., Noles Aguilar, P. J., & Delgado Villafuerte , C. R. (2019). Aquaponics systems for a sustainable development on rural areas of Manabí. Iberoamerican Environment & Sustainability Journal, 2(3 (Edición especial), 186-192. https://doi.org/10.46380/rias.v2i3.66

Issue

Section

Sustainable land management and food security

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.