Level of microbial contamination of the air in an agro-industrial workshop and its possible occupational risks
DOI:
https://doi.org/10.46380/rias.vol5.e253Keywords:
bacterium, diseases, enterobacter, microbiological contaminationAbstract
The purpose of this research was to identify the bacteria present in the surrounding air of an agro-industrial workshop and their possible occupational risks. We proceeded to characterize the activities that take place in the workshop, located in Bolívar canton, Manabí province, Ecuador, through the application of semi-structured interviews and direct observation. Subsequently, the degree of bacterial contamination was determined by applying environmental monitoring; two samplings were carried out at seven points. Bacterial collection was performed by gravity sedimentation. To determine the possible diseases that these can cause, the collected microorganisms were identified using Petrifilm Staph Express agar for Staphylococcus aureus and crystal violet-red neutral-bilid-glucose agar for Enterobacteriaceae. The highest microbial load was found in the office with 270 CFU/m3 of air. Sampling 1 reached up to 848 CFU/m3, being considered contaminated, and in sampling 2 the bacterial load was 550 CFU/m3, resulting in little contamination. There are no strains of Staphylococcus aureus, although there is a presence of Enterobacter aeroneges in the raw material entry and ice storage areas. For this reason, it was concluded that, if there are no adequate hygiene measures, the personnel is susceptible to contracting infections due to Enterobacter aeroneges.
Downloads
Metrics
References
Andualem, Z., Gizaw, Z., Bogale, L. y Dagne, H. (2019). Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidisciplinary Respiratory Medicine, 14(2). https://doi.org/jdq4
Ashuro, Z., Diriba, K., Afework, A., Washo, G. H., Areba, A. S., Gebremeskel. G., Endashaw, H., Weya, A. y Tesfu, M. (2022). Assessment of microbiological quality of indoor air at different hospital sites of Dilla University: A cross-sectional study. Environmental Health Insights. https://doi.org/jdq5
Bowers, R., McLetchie, S., Knight, R. y Fierer, N. (2011). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME Journal. 5, 601–612. https://doi.org/cb56rj
Bragoszewska, E., Biedron, I. y Hryb, W. (2020). Microbiological air quality and drug resistance in airborne bacteria isolated from a waste sorting plant located in Poland?A case study. Microorganisms, 8(2). https://doi.org/gj7ngp
Bragoszewska, E., Biedron, I., Kozielska, B. y Pastuszka, J. (2018). Microbiological indoor air quality in an office building in Gliwice, Poland: analysis of the case study. Air Quality, Atmosphere & Health, 11, 729–740. https://doi.org/gdzjcz
Bush, L., y Vazquez-Pertejo, M. (2022). Infecciones por Klebsiella, Enterobacter y Serratia. https://msdmnls.co/3CKwDLX
Course Hero. (2022). Methods of classifying and identifying microorganisms. https://bit.ly/3SVuDFY
Department of Agriculture. (june 28, 2017). "Danger Zone" (40°F-140 F). Food Safety and Inspection Service-U.S. Department of Agriculture https://bit.ly/3fhlrgm
Feria, H., Matilla, M. y Mantecón, S. (2020). La entrevista y la encuesta: ¿métodos o técnicas de indagación empírica? Didasc@lia: didáctica y educación, 11(3), 62–79. https://bit.ly/3fIbYyY
Fritsche O. (2016). Mikrobiologie. Springer Spektrum.
Fu, X., Ou, Z., Zhang, M., Meng, Y., Li, Y., Wen, J., Hu, Q., Zhang, X., Norbäck, D., Deng, Y., Zhao, Z. y Sun, Y. (2021). Indoor bacterial, fungal and viral species and functional genes in urban and rural schools in Shanxi Province, China–association with asthma, rhinitis and rhinoconjunctivitis in high school students. Microbiome, 9, e138. https://doi.org/gk56p7
Fujiyoshi, S., Tanaka, D. y Maruyama, F. (2017). Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02336
Igo, M. y Schaffner, D. (2019). Quantifying the influence of relative humidity, temperature, and diluent on the survival and growth of Enterobacter aerogenes. Journal of Food Protection, 82(12). 2135–2147. https://doi.org/10.4315/0362-028X.JFP-19-261
Instituto Ecuatoriano de Normalización. (2013). Norma técnica ecuatoriana 1529-1:2013. Control microbiológico de los alimentos. Enterobacteriaceae. Recuento en placa por siembra en profundidad (Primera edición). https://bit.ly/3V022Rt
Kerr, J., Lund, J., Møller, C. y Mette, A. (2020). Impact of dust on airborne Staphylococcus aureus’ viability, culturability, inflammogenicity, and biofilm forming capacity. International Journal of Hygiene and Environmental Health, 230, e113608. https://doi.org/jfnv
Kim, H., Huh H. J., Park, E., Chung D. y Kang, M. (2021). Multiplex molecular point-of-care test for syndromic infectious diseases. Biochip J. 15 (1), 14–22. https://doi.org/jggb
Kumar, P., Adnan, M., Singh, A. B. y Singh, R. (2021). Biological contaminants in the indoor air environment and their impacts on human health. Air Quality, Atmosphere & Health, 14, 1723–1736. https://doi.org/10.1007/s11869-021-00978-z
Madhwal, S., Prabhu, V., Sundriyal, S. y Shridhar, V. (2020). Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. Environmental Monitoring and Assessment, 192, e196. https://doi.org/jfpd
Masotti, F., Cattaneo, S., Stuknyte, M. y De Noni, I. (2019). Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air. Trends in Food Science & Technology, 90, 147-156 https://doi.org/10.1016/j.tifs.2019.06.006
Mayo Foundation for Medical Education and Research. (2022). Infecciones por estafilococos. https://mayocl.in/3T132Dt
Moelling, K. y Broecker, F. (2020). Air Microbiome and Pollution: Composition and Potential Effects on Human Health, Including SARS Coronavirus Infection. Journal of Environmental and Public Health, 2020, e 1646943. https://doi.org/10.1155/2020/1646943
Moldoveanu, A. (2015). Biological Contamination of Air in Indoor Spaces. In F. Nejadkoorki (Ed.), Current air quality issues. IntechOpen. https://bit.ly/3VmwkOi
Niazi, S., Hassanvand, M. S., Mahvi, A. H., Nabizadeh, R., Alimohammadi, M., Nabavi, S., Faridi, S., Dehghani, A., Hoseini, M., Moradi-Joo, M., Mokamel, A., Kashani, H., Yarali, N. y Yunesian, M. (2015). Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East. Environmental Science and Pollution Research, 22, 16014–16021. https://doi.org/10.1007/s11356-015-4793-z
Park, C., Park J., Lee S., Hwang, J. (2014). Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection. Biosens and Bioelectron, 52. 379–383. https://doi.org/10.1016/j.bios.2013.09.015
Pérez, R. A., Delgado, A., Ducaud, M., Maurens, J. y Rojas, R. (2016). Guía para la determinación de puntos de muestreo microbiológico en centrales frutícolas. Asociación de Exportadores de Frutas de Chile, Asociación Gremial https://bit.ly/3VfWiDo
Romero, C. A., Castañeda, D. F. y Acosta, G. S. (2016). Determinación de la calidad bacteriológica del aire en un laboratorio de microbiología en la Universidad Distrital Francisco José de Caldas en Bogotá, Colombia. Revista Nova, 14(26), 129-137. https://doi.org/jftg
Ruiz-Gil, T., Acuña, J. J., Fujiyoshi, S., Tanaka, D., Noda, J., Maruyama, F. y Jorquera, M. (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145, 106156. https://doi.org/gp6z2b
Sáez, E. (2017). Análisis de la calidad del aire interior en función de la tipología de ventilación [Tesis de Maestría, Universidad Politécnica de Valencia]. Repositorio institucional https://bit.ly/3T1qrnJ
Silva, J. (2018). Determinación de la calidad microbiológica en los ambientes de los laboratorios de la universidad de Santander Campus Cúcuta en el año 2018 [Tesis de grado, Universidad de Santander, Colombia]. Repositorio institucional https://bit.ly/3e9koyQ
Sistema Nacional de Información. (2012). Memoria Técnica cantón Bolívar. Secretaria Nacional de Planificación y Desarrollo de Ecuador.
Vivas, H. T., Calderón, J. M., Delgado, M. I. y Abril, R. V. (2021). Caracterización microbiológica del aire en el casco urbano de Calceta, Manabí, Ecuador. Ingeniería Hidráulica y Ambiental, 42(3), 47-63. https://bit.ly/3CzVzp6
Zhai, Y., Li, X., Wang, T., Wang, B., Li, C. y Zeng, G. (2018). A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environment International, 113, 74–90. https://doi.org/10.1016/j.envint.2018.01.007
Zhou, F., Niu, M., Zheng, Y., Sun, Y., Wu, Y., Zhu, T., & Shen, F. (2021). Impact of outdoor air on indoor airborne microbiome under hazy air pollution: A case study in winter Beijing. Journal of Aerosol Science, 156. 105798.https://doi.org/10.1016/j.jaerosci.2021.105798
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Holanda Teresa Vivas Saltos, Sulay Marcillo García , Diana Margarita, María Fernanda, José Manuel Calderón Pincay

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)
© This license allows users to distribute, remix, adapt, and build upon the material in any medium or format, provided that attribution is granted to the creator.




