Impacto de los colectores solares cilindro-parabólicos en la industria azucarera del Guairá en la reducción del consumo de biomasa no sostenible
DOI:
https://doi.org/10.46380/rias.v8.e451Palabras clave:
bosques nativos, deforestación, energía solar, ParaguayResumen
El objetivo de esta investigación fue evaluar el impacto de la instalación de la tecnología de colectores solares cilindro-parabólicos en la industria azucarera del Departamento del Guairá, principal región de producción de azúcar de caña del Paraguay, en la reducción del consumo de leña proveniente de bosques nativos. Mediante el procesamiento de datos climatológicos de la ciudad de Tebicuary, obtenidos de la herramienta Photovoltaic Geographical Information System (PVGIS), se ha dimensionado un campo solar a ser insertado en un proceso de hibridación al sistema de cogeneración de una planta azucarera. Con esto se pudo establecer un modelo híbrido, cuya respuesta a la irradiación solar fue simulada con el software Transient System Simulation Tool (TRNSYS). El recurso solar del lugar es suficiente para obtener vapor saturado a ser sobrecalentado a alta presión. La implementación de la tecnología solar mediante este modelo permitiría salvar anualmente una superficie de bosques nativos de entre 42,252.58 ha a 79,223.59 ha para consumos medios y máximos de energía auxiliar, respectivamente. Los resultados obtenidos constituyen una referencia en términos del aprovechamiento del recurso solar con un potencial impacto positivo en el ambiente, estudios similares pueden realizarse en otras industrias y zonas del país.
Descargas
Métricas
Citas
Agüero, C. J., Pisa, J. R., Andina, R. L., & Nanni, F. E. (2013). Cogeneración en la industria azucarera. Revista de Ciencias Exactas e Ingeniería, 36, 17-27. https://acortar.link/rD2WpT
Banco Interamericano de Desarrollo. (2008). Herramientas para mejorar la efectividad del mercado de combustibles de madera en la economía rural. Informe diagnóstico Paraguay. División de Medio Ambiente, Desarrollo Rural, y Desastres Naturales. https://acortar.link/ecUQZg
Beckman, W. A., Broman, L., Fiksel, A., Klein, S. A., Lindberg, E., Schuler, M. & Thornton, J. (1994). TRNSYS The most complete solar energy system modeling and simulation software. Renewable energy, 5(1-4), 486-488. https://doi.org/10.1016/0960-1481(94)90420-0
Birru, E., Erlich, C. & Martin, A. (2019). Energy performance comparisons and enhancements in the sugar cane industry. Biomass Conversion and Biorefinery, 9, 267-282. https://doi.org/10.1007/s13399-018-0349-z
Bodo, T., Gimah, B. G. & Seomoni, K. J. (2021). Deforestation and habitat loss: Human causes, consequences and possible solutions. Journal of Geographical Research, 4(2), 22-30. https://doi.org/10.30564/jgr.v4i2.3059
Bolognese, M., Viesi, D., Bartali, R. & Crema, L. (2020). Modeling study for low-carbon industrial processes integrating solar thermal technologies. A case study in the Italian Alps: The Felicetti Pasta Factory. Solar Energy, 208, 548-558. https://doi.org/10.1016/j.solener.2020.07.091
Brough, D., Ramos, J., Delpech, B. & Jouhara, H. (2021). Development and validation of a TRNSYS type to simulate heat pipe heat exchangers in transient applications of waste heat recovery. International Journal of Thermofluids, 9, e100056. https://doi.org/10.1016/j.ijft.2020.100056
Burin, E. K., Vogel, T., Multhaupt, S. Thelen, A., Oeljeklaus, G., Görner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117(Part. 2), 416-428. https://doi.org/10.1016/j.energy.2016.06.071
Carvalho, D. J., Moretti, R. R., Colodette, J. L. & Bizzo, W. A. (2020). Assessment of the self-sustained energy generation of an integrated first- and second-generation ethanol production from sugarcane through the characterization of the hydrolysis process residues. Energy Conversion and Management, 203, e112267. https://doi.org/10.1016/j.enconman.2019.112267
Centro Azucarero y Alcoholero Paraguayo. (2024). Centro Azucarero y Alcoholero Paraguayo. https://www.centroazucarero.org.py
Chargui, R., Tashtoush, B. & Awani, S. (2022). Experimental study and performance testing of a novel parabolic trough collector. International Journal of Energy Research, 46(2), 1518-1537. https://doi.org/10.1002/er.7267
Columbia Center on Sustainable Investment. (2021). Vías de Descarbonización del Sector Energético del Paraguay. Quadracci Sustainable Engeeniering Lab de la Universidad de Columbia y Centro de Recursos Naturales, Energía y Desarrollo (CRECE). https://acortar.link/tCJEjb
Da Ponte, E., Kuenzer, C., Parker, A., Rodas, O., Oppelt, N. & Fleckenstein, M. (2017). Forest cover loss in Paraguay and perception of ecosystem services: A case study of the Upper Parana Forest. Ecosystem services, 24, 200-212. https://doi.org/10.1016/j.ecoser.2017.03.009
Er, Z. (2016). A study of evaluation of solar energy simulation and modeling systems. Acta Physica Polonica A, 130(1), 72-77. https://doi.org/10.12693/APhysPolA.130.72
EU Science Hub. (2023). PVGIS data sources & calculation methods. European Commission's Joint Research Centre. https://acortar.link/OFDDh1
Fazekas, A., Bataille, C. & Vogt-Schilb, A. (2022). Prosperidad libre de carbono. Como los gobiernos pueden habilitar 15 transformaciones esenciales. Banco Interamericano de Desarrollo. https://acortar.link/l57Daq
Fredriksson, J., Eickhoff, M., Giese, L. & Herzog, M. (2021). A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application. Solar Energy, 215, 266-310. https://doi.org/10.1016/j.solener.2020.12.017
Holler, S., Winkelmann, A., Pelda, J. & Salaymeh, A. (2021). Feasibility study on solar thermal process heat in the beverage industry. Energy, 233, e121153. https://doi.org/10.1016/j.energy.2021.121153
International Renewable Energy Agency. (2022). Renewable Technology Innovations Indicators: Mapping progress in costs, patents and standars. International Renewable Energy Agency. https://www.irena.org//media/Files/IRENA/Agency/Publication/2022
International Renewable Energy Agency. (2023). Global LCOE and Auction values. International Renewable Energy Agency. https://acortar.link/TvMyOD
Janotte, N., Feckler, G., Kötter, J., Decker, S., Herrmann, U., Schmitz, M. & Lüpfert, E. (2014). Dynamic performance evaluation of the HelioTrough® collector demonstration loop–towards a new benchmark in parabolic trough qualification. Energy Procedia, 49, 109-117. https://doi.org/10.1016/j.egypro.2014.03.012
Klein, S. & Nellis, G. (2011). Thermodynamics. Cambridge University Press.
Ktistis, P. K., Agathokleous, R. A. & Kalogirou, S. A. (2021). Experimental performance of a parabolic trough collector system for an industrial process heat application. Energy, 215(Part. A), e119288. https://doi.org/10.1016/j.energy.2020.119288
McDowell, T., E Bradley, D., Hiller, M., Lam, J., Merk, J. & Keilholz, W. (2017, August). TRNSYS 18: The continued evolution of the software [Conference presentation summary]. 15th Conference of IBPSA. https://acortar.link/VO5PNi
Mohebalian, P. M., Lopez, L. N., Tischner, A. B. & Aguilar, F. X. (2022). Deforestation in South America's tri-national Paraná Atlantic Forest: Trends and associational factors. Forest Policy and Economics, 137, e102697. https://doi.org/10.1016/j.forpol.2022.102697
Muller, M., Vincent, S. & Kumar, O. P. (2020). Prediction of land-change using machine learning for the deforestation in Paraguay. Bulletin of Electrical Engineering and Informatics, 9(5), 1774-1782. https://doi.org/10.11591/eei.v9i5.2532
Osorio, J. D. & Rivera-Alvarez, A. (2022). Influence of the concentration ratio on the thermal and economic performance of parabolic trough collectors. Renewable Energy, 181, 786-802. https://doi.org/10.1016/j.renene.2021.09.040
Quiñones, G., Felbol, C., Valenzuela, C., Cardemil, J. M. & Escobar, R. A. (2020). Analyzing the potential for solar thermal energy utilization in the Chilean copper mining industry. Solar Energy, 197, 292-310. https://doi.org/10.1016/j.solener.2020.01.009
Ríos, M., Kaltschmitt, M., Borsy, P. & Ortiz, R. (2016). Solid biomass within the energy system of Eastern Paraguay—status and consequences. Biomass Conversion and Biorefinery, 6, 365-375. https://doi.org/10.1007/s13399-015-0194-2
Rodríguez, C. M. (2022). Incidencia de la deforestación en la captación de dióxido de carbono y provisión de oxígeno en Paraguay. Periodo 1990-2020. Población y Desarrollo, 28(54), 6-15. https://doi.org/10.18004/pdfce/2076-054x/2022.028.54.006
Schneider, R. (Editor). (2013). Producción y Consumo de Biomasa Sólida en Paraguay. Ministerio de Obras Públicas y Comunicaciones, Viceministerio de Minas y Energía. https://acortar.link/p5wSMy
Solar Energy Industries Association. (2023). Initiatives. Concentrating Solar Power. https://seia.org/concentrating-solar-power
Transient System Simulation Tool. (2019). What is TRNSYS? Transient System Simulation Tool. https://www.trnsys.com
Turns, S. R. & Pauley, L. L. (2020). Thermodynamics: concepts and applications. Cambridge University Press.
Viceministerio de Minas y Energía. (2019a). Perspectiva energética 2050 (Informe Ejecutivo). Departamento de Planificación y Estadística. Departamento de Monitoreo Energético. Dirección de Recursos Energéticos. https://acortar.link/vK9bqT
Viceministerio de Minas y Energía. (2019b). Producción y consumo de biomasa forestal con fines energéticos en el Paraguay. Dirección de Energías alternativas. Banco Interamericano de Desarrollo. https://acortar.link/CLzrA9
Viceministerio de Minas y Energía. (2022). Balance Energético Nacional. Dirección de Recursos Energéticos Primarios. https://acortar.link/o3SifM
Yuanjing, W., Cheng, Z., Yanping, Z. & Xiaohong, H. (2020). Performance analysis of an improved 30 MW parabolic trough solar thermal power plant. Energy, 213, e118862. https://doi.org/10.1016/j.energy.2020.118862
Zebra, E. I. C., van der Windt, H. J., Nhumaio, G. & Faaij, A. P. (2021). A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews, 144, e111036. https://doi.org/10.1016/j.rser.2021.111036
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 José María Gómez, Eduardo Márquez Canosa

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.