Comparison of composting and vermicomposting on soil quality through the analysis of temperature, pH, and fertility

Authors

  • José Fernando Mendoza Rodríguez Unidad Educativa Joaquín Lalama, Ecuador
  • José David Cuero Cortéz Unidad Educativa Joaquín Lalama, Ecuador

DOI:

https://doi.org/10.46380/rias.v8.e530

Keywords:

fertility, pH, statistical analysis, temperature

Abstract

The present study aimed to conduct vermiculture practices to compare the composting and vermicomposting processes across different groups and to evaluate the behavior of the variables temperature, fertility, and pH. The applied methodology followed a quantitative approach based on prospective studies. Organic matter and earthworms (Eisenia fetida) were used to perform the comparative analysis of the defined variables. Measurements were taken using the Rapitest Digital 3-Way Analyzer across three groups: one composting unit (C) and two vermiculture units (L1 and L2). Descriptive statistics were applied to assess variability among groups, and inferential statistics were employed to determine correlation levels. Specifically, Pearson’s correlation was used for normally distributed data, and Spearman’s correlation was applied when distributions were asymmetric. Results indicated that pH exhibited the lowest variability among the groups, whereas temperature showed a strong positive correlation (0.8) between groups C and L2. Fertility values were ideal for cultivation processes, with a moderate dispersion of the data.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Andrade, M. R., Ramírez S, C. y Cadena C, L. F. (2024). Las prácticas agrícolas tradicionales para enfrentar retos medioambientales: una revisión sistemática de la literatura publicada entre 2020 y 2024. Ciencia Latina Revista Científica Multidisciplinar, 8(5), 932-954. https://doi.org/10.37811/cl_rcm.v8i5.13474

Barrow, N. J. y Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1), 21-37. https://doi.org/10.1007/s11104-023-05960-5

Cando, L. E. C., Vaca, C. V. B., Cabezas, L. A. M. y Carrión, E. N. Q. (2024). Potencialidades de la lombricultura, en la educación ambiental, para optimizar el aprendizaje de la química verde. Polo del Conocimiento, 9(2), 807–827. https://acortar.link/z8TWL6

Carvalho, A. M. y Cirión, L. E. C. (2022). Compostaje y biodigestores como solución al problema de los residuos orgánicos en el medio rural. Ciencia Latina Revista Científica Multidisciplinar, 6(4), 990-1013. https://doi.org/10.37811/cl_rcm.v6i4.2641

Elissen, H. J. H., van der Weide, R. y Gollenbeek, L. (2023). Effects of vermicompost on plant and soil characteristics – a literature overview (Informe WPR-OT 995). Wageningen Research. https://doi.org/10.18174/587210

Enríquez, J. T. (2021). Los abonos orgánicos: Ventajas y desventajas en los cultivos hortícolas de la costa ecuatoriana [Tesis de licenciatura, Universidad Técnica de Babahoyo]. Repositorio institucional. http://dspace.utb.edu.ec/handle/49000/9284

Gebrekidan, L., Wogi, L. y Chimdi, A. (2025). Integrated effect of NPS and vermicompost addition on the selected soil properties at the Bako Agricultural Research Center in Gobu Sayo District Western Oromia, Ethiopia. Discover Agriculture, 3(1), 27. https://doi.org/10.1007/s44279-024-00129-9

González-Jiménez, Y. y Villalobos-Morales, J. (2021). Manejo ambiental de residuos orgánicos: Estado del arte de la generación de compostaje a partir de residuos sólidos provenientes de sistemas de trampas de grasa y aceite. Revista tecnología en marcha, 34(2), 11-22. http://dx.doi.org/10.18845/tm.v34i2.4843

Ho, T. T. K., Le, T. H., Tran, C. S., Nguyen, P. T., Vo, T. D. H., Thai, V. N., y Bui, X. T. (2022). Compost to improve sustainable soil cultivation and crop productivity. Case Studies in Chemical and Environmental Engineering, 6, 100211. https://doi.org/10.1016/j.cscee.2022.100211

Hinojosa-Meza, R., Olvera-Gonzalez, E., Escalante-Garcia, N., Dena-Aguilar, J. A., Montes Rivera, M., y Vacas-Jacques, P. (2022). Cost-Effective and Portable Instrumentation to Enable Accurate pH Measurements for Global Industry 4.0 and Vertical Farming Applications. Applied Sciences, 12(14), 7038. https://doi.org/10.3390/app12147038

Katiyar, R. B., Sundaramurthy, S., Sharma, A. K., Arisutha, S., Pratap-Singh, A., Mishra, S., Ayub, R., Jeon, B.-H., y Khan, M. A. (2023). Vermicompost: An Eco-Friendly and Cost-Effective Alternative for Sustainable Agriculture. Sustainability, 15(20), 14701. https://doi.org/10.3390/su152014701

Kohl, L., Vielhauer, C., Ozturk, A., Minarsch, E.-M. L., Ahl, C., Niether, W., Clifton-Brown, J. y Gattinger, A. (2025). Field Evaluation of a Portable Multi-Sensor Soil Carbon Analyzer: Performance, Precision, and Limitations Under Real-World Conditions. Soil Systems, 9(3), 67. https://doi.org/10.3390/soilsystems9030067

Luster Leaf Products Inc. (2024). Rapitest digital 3way soil analyzer: Instructions (Manual del modelo 1835). https://acortar.link/Y31XFV

Meena, A. L., Karwal, M., Dutta, D. y Mishra, R. P. (2021). Composting: phases and factors responsible for efficient and improved composting. Agriculture and Food: e-Newsletter, 1, 85-90. https://doi.org/10.13140/RG.2.2.13546.95689

Molina, J. C. T. y de la Guerra, C. G. C. (2025). Estrategia de Química Verde para el Manejo Sostenible de Residuos Orgánicos de la Agricultura Ecuatoriana: Un Enfoque Ecológico y Técnico de Lombricultura. Revista Científica Multidisciplinaria InvestiGo, 6(15), 461-472. https://doi.org/10.56519/h46w7191

Monta-Calle, D. y Yánez-Moretta, P. (2023). Consideraciones para un prototipo de estación de lombricultivo y el aprovechamiento de residuos orgánicos generados en una institución de educación superior de Quito. Polo del Conocimiento, 8(9), 300-323. https://acortar.link/inEChH

Ngaba, M. J. Y., Mgelwa, A. S., Gurmesa, G. A., Uwiragiye, Y., Zhu, F., Qiu, Q., ... y Rennenberg, H. (2024). Meta-analysis unveils differential effects of agroforestry on soil properties in different zonobiomes. Plant and Soil, 496(1), 589-607. https://doi.org/10.1007/s11104-023-06385-w

Nova, M. L., Ferronato, N., Ragazzi, M. y Torretta, V. (2019). Vermicomposting process for treating animal slurry in Latin American rural areas. Waste Management y Research, 37(6), 611-620. https://doi.org/10.1177/0734242X19839483

Oyege, I. y Balaji Bhaskar, M. S. (2023). Effects of vermicompost on soil and plant health and promoting sustainable agriculture. Soil Systems, 7(4), 101. https://doi.org/10.3390/soilsystems7040101

Pacheco, A. M., Porras, I. D. y Rodríguez, D. A. (2021). Dispositivo para la clasificación de residuos sólidos y medición de huella ecológica. Revista Habitus: Semilleros de investigación, 1(2), 12181. https://doi.org/10.19053/22158391.12181

Pal, A., Dubey, S. K., Goel, S. y Kalita, P. K. (2024). Portable sensors in precision agriculture: Assessing advances and challenges in soil nutrient determination. TrAC Trends in Analytical Chemistry, 180, 117981. https://doi.org/10.1016/j.trac.2024.117981

Pimentel, K. R., Pérez, D. M., Peña, L. E. T., Revol, M. M. y Reyes, D. M. (2023). Efecto de la utilización de estiércol porcino y caprino como sustrato en la producción de humus de lombriz Eisenia foétida (Lombriz roja californiana). Ecovida, 13(2), 58-65. https://acortar.link/wLmoct

Rincones, P. A., Zapata, J. E., Figueroa, O. A. y Parra, C. (2023). Evaluación de sustratos sobre los parámetros productivos de la lombriz roja californiana (Eisenia fetida). Información tecnológica, 34(2), 11-20. https://dx.doi.org/10.4067/s0718-07642023000200011

Ruiz-Gonzalez, A., Kempson, H. y Haseloff, J. (2024). Development of a Low-Cost Sensor System for Accurate Soil Assessment and Biological Activity Profiling. Micromachines, 15(11), 1293. https://doi.org/10.3390/mi15111293

Schwamback, D., Persson, M., Berndtsson, R., Bertotto, L. E., Kobayashi, A. N. A. y Wendland, E. C. (2023). Automated Low-Cost Soil Moisture Sensors: Trade-Off between Cost and Accuracy. Sensors, 23(5), 2451. https://doi.org/10.3390/s23052451

Serdar, C. C., Cihan, M., Yücel, D. y Serdar, M. A. (2021). Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochemia médica, 31(1), 010502. https://hrcak.srce.hr/252075

Singh, V., Wyatt, J., Zoungrana, A. y Yuan, Q. (2022). Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling, 7(1), 10. https://doi.org/10.3390/recycling7010010

Terefe, Z., Feyisa, T., Molla, E. y Ejigu, W. (2024). Effects of vermicompost and lime on acidic soil properties and malt barley (Hordeum Distichum L.) productivity in Mecha district, northwest Ethiopia. PloS One, 19(12), e0311914. https://doi.org/10.1371/journal.pone.0311914

Zhang, H., Li, J., Zhang, Y., y Huang, K. (2020). Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. International journal of environmental research and public health, 17(5), 1748. https://doi.org/10.3390/ijerph17051748

Zhou, Y., Zhang, D., Zhang, Y., Ke, J., Chen, D. y Cai, M. (2021). Evaluation of temperature on the biological activities and fertility potential during vermicomposting of pig manure employing Eisenia fetida. Journal of Cleaner Production, 302, 126804. https://doi.org/10.1016/j.jclepro.2021.126804

Published

2025-12-18

How to Cite

Mendoza Rodríguez, J. F., & Cuero Cortéz, J. D. (2025). Comparison of composting and vermicomposting on soil quality through the analysis of temperature, pH, and fertility. Iberoamerican Environment & Sustainability Journal, 8, e530. https://doi.org/10.46380/rias.v8.e530

Issue

Section

Sustainable land management and food security