Bioacumulación de mercurio y zinc en especies ictícolas de la subcuenca del río Carrizal, Manabí, Ecuador.
DOI:
https://doi.org/10.46380/rias.v3i2.100Palabras clave:
Aequidens rivilatus, biomagnificación, Hoplias microlepis, ictiofauna, metales pesados, Oreochromis niloticusResumen
La contaminación por metales pesados representa una preocupación mundial. La presente investigación persiguió evaluar la bioacumulación de mercurio y zinc en los tejidos branquial, hepático y muscular en especies ictícolas de la subcuenca del río Carrizal. Se establecieron 14 estaciones de monitoreo. Para la determinación de mercurio y zinc se aplicaron los métodos APHA AWWA WEF 3112-B y APHA AWWA WEF 3111-B-C, respectivamente. En Oreochromis niloticus, la mayor concentración de mercurio (0.300 mg/kg en agosto y 0.276 mg/kg en octubre) y zinc (0.371 mg/kg en agosto y 0.347 mg/kg en octubre) fue mayor en branquias. Para Hoplias microlepis el músculo fue el depósito de mercurio (1.615 mg/kg en agosto y 1.456 mg/kg en octubre) y de zinc (1.243 mg/kg en agosto y 1.069 mg/kg en octubre). El Aequidens rivulatus presentó los valores más altos de mercurio en músculo (2.034 mg/kg en agosto y 1.926 mg/kg en octubre). En cuanto al zinc, en agosto se encontraron 0.373 mg/kg en branquias. Durante el monitoreo realizado en agosto de 2017 existió mayor presencia de mercurio y zinc en las especies analizadas. Se deduce que la biomagnificación de metales pesados en la zona de estudio tiene relación directa con la utilización de insumos agrícolas.
Descargas
Métricas
Citas
Ahmed, A., Sultana, S., Habib, A., Ullah, H., Musa, N., & Hossain, M. (2019). Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLOS ONE, 14(10). https://doi.org/10.1371/journal.pone.0219336
Akan, J.C., Salwa, M., Yikala, B.S., & Chellube, Z.M. (2012). Study on the Distribution of Heavy Metals in Different Tissues of Fishes from River Benue in Vinikilang, Adamawa State, Nigeria. British Journal of Applied Science & Technology, 2(4), 311-333. https://doi.org/10.9734/BJAST/2012/1716
Baharom, Z., & Ishak, M. (2015). Determination of heavy metal accumulation in fish species in Galas River, Kelantan and Beranang mining pool, Selangor. Procedia Environmental Sciences, 30, 320-325. https://doi.org/10.1016/j.proenv.2015.10.057
Banquett, C., Juris, G.A., Olaya, CH.W., Segura, F.F., Brú, S.B., y Tordecilla, G. (2005). Hábitos alimenticios del Moncholo, Hoplias malabaricus Bloch (Pisces: Erythrinidae), en la Ciénega Grande de Lorica, Sistema río Sinú, Colombia. Dahlia, (8), 79-88.
Bawuro, A.A., Voegborlo, R.B., & Adimado, A.A. (2018). Bioaccumulation of Heavy Metals in Some Tissues of Fish in Lake Geriyo, Adamawa State, Nigeria. Journal of Environmental and Public Health, 2018. https://doi.org/10.1155/2018/1854892
Betancourt, G.S. (2017). Determinación de hierro y zinc en diferentes especies de pescados de la costa ecuatoriana por espectrofotometría de absorción atómica de llama [Tesis de grado, Pontificia Universidad Católica del Ecuador]. Repositorio Institucional PUCE. https://bit.ly/3roBcDE
Confederación Hidrográfica del Ebro. (2015). Plan Hidrológico del Ebro 2010-2015. https://bit.ly/33RZQm7
Correa, M., Bolaños, M., Rebolledo, E., Rubio, D., y Salinas. E. (2015). Análisis del Contenido de Metales en Aguas, Sedimentos y Peces en la Cuenca del Río Santiago, Provincia de Esmeraldas, Ecuador. Revista Científica Interdisciplinaria Investigación y Saberes, 2(4), 32-42. https://bit.ly/3mURphg
Cousillas, A. (2007). Informe Toxicológico. Anteproyecto Avanzado Muelle Multipropósito «C». HYTSA Estudios y Proyectos S.A. https://bit.ly/2Ir1jbC
da Silva, Y.J., Cantalice, J.R., do Nascimento, C.W., Singh, V.P., da Silva, Y.J., Silva, C.M., Silva, M., & Guerra, S. (2017). Bedload as an indicator of heavy metal contamination in a Brazilian anthropized watershed. CATENA, 153, 106-113. https://doi.org/10.1016/j.catena.2017.02.004
Darko, G., Azanu, D., & Kwame, N. (2016). Accumulation of toxic metals in fish raised from sewage-fed aquaculture and estimated health risks associated with their consumption. Environmental Chemistry, Pollution & Waste Management, 2(1). https://doi.org/10.1080/23311843.2016.1190116
Directiva 76/464 de 1976. [CEE del Consejo]. Normativas Comunitarias Sobre Protección de las Aguas. https://bit.ly/3nLnLeX
Ferriss, B.E., & Essington, T.E. (2014). Does trophic structure dictate mercury concentrations in top predators? A comparative analysis of pelagic food webs in the Pacific Ocean. Ecological Modelling, 278, 18-29. https://doi.org/10.1016/j.ecolmodel.2014.01.029
García, D. (1993). Principios y técnicas de gestión de la pesca en aguas continentales (1ra ed.). Ediciones Mundi-Prensa.
Hall, B.D., Bodaly, R.A., Fudge, R.J.P., Rudd, J.W.M., & Rosenberg, D.M. (1997). Food as the dominant pathway of methylmercury uptake by fish. Water, Air, and Soil Pollution, 100, 13-24. https://doi.org/10.1023/A:1018071406537
Herrero, T. (2014). Impacto de los drenajes ácidos en los ecosistemas acuáticos producidos por la minería del carbón en El Bierzo: bioacumulación de metales pesados y evolución de las comunidades biológicas [Tesis de doctorado, Universidad de León]. Repositorio Institucional UDL. http://hdl.handle.net/10612/3518
Houri, K., Fegrouche, R., Mansouri, D., Allami, H., & Fadli, M. (2018). Distribution of degree of contamination by heavy metals of the gills muscle, liver and gonads of Lepomis gibbosus Linnaeus, 1758 (Centrachide Fish. Percifome, Actinopterygiis). International Journal of Fauna and Biological Studies, 5(2), 163-169. https://bit.ly/3oxAH84
Hylander, L.D., Pinto, F.N., Guimaraes, J.R.D., Meili, M., Oliveira, L.J., & Castro, E. (2000). Fish mercury concentration in the Alto Pantanal, Brazil: influence of season and water parameters. Science of The Total Environment, 261(1-3),9-20. https://doi.org/10.1016/S0048-9697(00)00591-X
Li, P., Zhang, J., Xie, H., Liu, C., Liang, S., Ren, Y., & Wang, W. (2015). Heavy metal bioaccumulation and health hazard assessment for three fish species from Nansi Lake, China. Bulletin of Environmental Contamination and Toxicology, 94, 431-436. https://doi.org/10.1007/s00128-015-1475-y
López, B.R., y Cruz, L.A. (2011). Elaboración de un probiótico a base de microorganismos nativos y evaluación de su efecto benéfico al proceso digestivo de la tilapia roja (Oreochromis Spp.) en etapa de engorde en la zona de Santo Domingo [Tesis de grado, Escuela Politécnica del Ejercito]. Repositorio Institucional ESPE. https://bit.ly/2KxmolF
Malik, D., & Maurya, P. (2014). Heavy metal concentration in water, sediment, and tissues of fish species (Heteropneustis fossilis and Puntius ticto) from Kali River, India. Toxicological & Environmental Chemistry, 95(8), 1195-1206. https://doi.org/10.1080/02772248.2015.1015296
Mancera, N.J., y Álvarez, R. (2006). Estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuícolas de Colombia. Acta Biológica Colombiana, 11(1), 3-23. https://bit.ly/2KEC46K
Metian, M., Warnau, M., Chouvelon, T., Pedraza, F., Rodríguez, A.M., & Bustamante, P. (2013). Trace element bioaccumulation in reef fish from New Caledonia: influence of trophic groups and risk assessment for consumers. Marine Environmental Research, 87-88, 26-36. https://doi.org/10.1016/j.marenvres.2013.03.001
Oficina Nacional de Normalización. (1984). Contaminantes metálicos. Regulaciones sanitarias. (NC 38-02-06.).
Olivares, H., Guerra, R., Carvajal, D., Mukarker, M., y Lobos, G. (2014). Evaluación de la genotoxicidad de las aguas costeras de Chile central sobre los peces Mugil cephalus y Odontesthes brevianalis. Hidrobiológica, 24(3), 271-279. https://bit.ly/2WG7zzB
Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2017). Comisión del CODEX alimentarius. Organización Mundial de la Salud. https://bit.ly/3lVv8P0
Pis, M.A. (1999). Impacto de los mpacto de los metales contaminantes en la calidad de la tilapia (Oreocromis Aureus) cultivada en Cuba [Tesis de maestría, Universidad de La Habana]. Repositorio Centro de Investigaciones Pesqueras. http://hdl.handle.net/1834/2869
Rajeshkumar, S., & Li, X. (2018). Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports, 5, 288-295. https://doi.org/10.1016/j.toxrep.2018.01.007
Reglamento No?1881 de 2006 [Unión Europea]. Por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. 19 de diciembre de 2006. https://bit.ly/3n51AQt
Sancho-Tello, V., Cortés, S. y Pérez, E. (2010). Red de Control de Sustancias Peligrosas. Agua, sedimentos y Biota. Confederación Hidrográfica del Ebro. Ministerio de Medio Ambiente y Medio Rural y Marino de España. https://bit.ly/3gnZNn2
Shen, L., Lam, K., Ko, P., & Chan, K. (1998). Metal concentrations and analysis of metal binding protein fractions from the liver of Tilapia collected from Shing Mun River. Marine Environmental Research, 46(1-5), 597-600. https://doi.org/10.1016/S0141-1136(98)00012-9
Souza, L., Morozesk, M., Bonomo, M., Azevedo, V., Sakuragui, M., Elliott, M., Matsumotoc, S., Wunderlin, D., Baroni, M., Monferrán, M., & Fernandes, M. (2018). Differential biochemical responses to metal/metalloid accumulation in organs of an edible fish (Centropomus parallelus) from Neotropical estuaries. Ecotoxicology and environmental safety, 161, 260-269. https://doi.org/10.1016/j.ecoenv.2018.05.068
Spry, D., & Wiener, J. (1991). Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review. Environmental Pollution, 71(2-4), 243-304. https://doi.org/10.1016/0269-7491(91)90034-T
Vergara, E., y Rodríguez, P. (2015). Presencia de mercurio, plomo y cobre en tejidos de Orechromis niloticus: sector de la cuenca alta del río Chicamocha, vereda Volcán, Paipa, Colombia. Producción + Limpia, 10(2), 114-126. https://bit.ly/33Ta0D4
Vrhovnik, P., Arrebola, J., Serafimovski, T., Dolenec, T., Šmuc, N., Dolenec, M., & Mutch, E. (2013). Potentially toxic contamination of sediments, water and two animal species in Lake Kalimanci, FYR Macedonia: relevance to human health. Environmental Pollution, 180, 92-100. https://doi.org/10.1016/j.envpol.2013.05.004
Waheed, S., Kamal, A., & Malik, R. (2014). Human health risk from organspecific accumulation of toxic metals and response of antioxidants in edible fish species from Chenab River, Pakistan. Environmental Science and Pollution Research, 21, 4409-4417. https://doi.org/10.1007/s11356-013-2385-3
Webb, J., Mainville, N., Mergler, D., Lucotte, M., Betancourt, O., Davidson, R., Cueva, E., & Quizhpe, E. (2004). Mercury in Fish-eating Communities of the Andean Amazon, Napo River Valley, Ecuador. EcoHealth, 1(2), 59-71. https://doi.org/10.1007/s10393-004-0063-0
Zapata, J. (1994). Environmental impacts study of gold mining in the Madeira river Bolivian-Brazilian border. In: Environmental mercury pollution and its health effects in Amazon river basin. Natl. Inst. Minamata Disease and Inst Biophysics of the Univerdidade Federal do Rio de Janeiro. Rio de Janeiro, 23-24.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Ana María Aveiga Ortiz, Flor María Cárdenas Guillén, Fabián Peñarrieta Macías, Francisco Alejandro Alcántara Boza

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.



